A Parallel Implementation of a Neural-Network Based Object Classifier
نویسندگان
چکیده
This paper presents a parallel implementation of an intelligent 2-D object classifier. The artificial vision system, based on neural networks, allows for the distinction among several different classes of images and provides invariance in respect to rotation, translation and scaling of the input image. The parallel implementation was made on the P-RIO environment that facilitates parallel programming on a cluster of workstations. The results obtained in this work show a significant reduction of time in both learning and recognition tasks. Moreover, they demonstrate that a low-cost network of workstations may be used to achieve good speed-up in solving artificial vision tasks.
منابع مشابه
Forward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning
The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...
متن کاملA NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملParallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کامل